Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Biogenic amines putrescine, spermidine and spermine are ubiquitous in nature and have interested researchers because they are essential for cell division and viability, and due to a large body of their pharmacological effects on growth and development in most living cells. The genes and enzymes involved in their biosynthetic pathways are now established and characterized. In recent years, molecular aspects of polyamine action have also begun to emerge. Our model is the ripening tomato fruit in which processes of cell division, cell expansion and cell growth have ceased, and yet the cells are responsive at biochemical and molecular levels to genetically manipulated concentrations of putrescine (Put), spermidine (Spd) and spermine (Spm). Thus, transcriptome, limited protein profiling, and metabolome studies of transgenic tomato fruit have yielded significant new information on cellular processes impacted by polyamine manipulation. We have used these datasets to determine the linear correlation coefficients between the endogenous levels of Put, Spd and Spm with several parameters. Results of our analysis presented here show that effects of the diamine Put generally contrast those with polyamines Spd and Spm, emphasizing that individual biogenic amines should be considered to have defined action in plant biology and that they differentially affect growth and development. A multiple function model of polyamine action is discussed to explain the role of polyamines in most organisms, in general, and ripening fruit, in particular.

Original publication




Journal article


Plant Physiol Biochem

Publication Date





540 - 546


Fruit, Gene Expression Profiling, Lycopersicon esculentum, Metabolome, Models, Biological, Plants, Genetically Modified, Putrescine, Spermidine, Spermine