Observation of laminar and turbulent flow in superfluid 4He using a vibrating wire
Yano H., Handa A., Nakagawa H., Obara K., Ishikawa O., Hata T., Nakagawa M.
We have investigated the laminar and the turbulent flow in superfluid 4He using a vibrating wire made of thin NbTi (φ 2.5 μm). The wire velocity as a function of applied force has shown a large hysteresis at the first cooling from normal fluid to the superfluid state. But after a couple of increasing and decreasing wire velocity we have found that the hysteresis vanished and the laminar and the turbulent flow are clearly separated at a critical velocity. The wire moving just after the first cooling must be influenced by remnant vortices nucleated through the superfluid transition. The appearance of the laminar flow below the critical velocity suggests that vortex strings on the wire seem to be selected as suitable sizes by a vibrating flow at higher velocities. We also measured the velocity dependence after immersing the wire directly into the superfluid and found that the laminar region expands up to a velocity much higher than the critical velocity observed above. This result indicates that remnant vortices are considerably reduced by the immersing method. © 2005 Springer Science+Business Media, Inc.