Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We have investigated the laminar and the turbulent flow in superfluid 4He using a vibrating wire made of thin NbTi (φ 2.5 μm). The wire velocity as a function of applied force has shown a large hysteresis at the first cooling from normal fluid to the superfluid state. But after a couple of increasing and decreasing wire velocity we have found that the hysteresis vanished and the laminar and the turbulent flow are clearly separated at a critical velocity. The wire moving just after the first cooling must be influenced by remnant vortices nucleated through the superfluid transition. The appearance of the laminar flow below the critical velocity suggests that vortex strings on the wire seem to be selected as suitable sizes by a vibrating flow at higher velocities. We also measured the velocity dependence after immersing the wire directly into the superfluid and found that the laminar region expands up to a velocity much higher than the critical velocity observed above. This result indicates that remnant vortices are considerably reduced by the immersing method. © 2005 Springer Science+Business Media, Inc.

Original publication




Journal article


Journal of Low Temperature Physics

Publication Date





561 - 566