Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Cellulose acetate polymer (CAP) solution is a new liquid embolic material, and it has been used clinically for the thrombosis of cerebral aneurysms. The purpose of the study was to test a method of aneurysm treatment. In an experimental model, retrievable interlocking detachable coils (IDCs) were used to create an intraaneurysmal frame or prop and then CAP was injected into 20 experimentally induced canine cervical aneurysms. Intraaneurysmal thrombosis was induced 1 week after aneurysm creation. Complete thrombosis was attempted in 12 aneurysms, and partial thrombosis was attempted in 4. Four other aneurysms served as controls. Follow-up angiography was performed for up to 8 weeks, and with the exception of 4 aneurysms, which were kept for a 2-year long-term follow-up study, the aneurysms were then harvested for histological examination. Thrombosis was successfully achieved in all cases except for 2 enlarged aneurysms that were initially partially thrombosed. No thromboembolism to distal vessels was observed. No compaction or shift of the CAP-IDC complex occurred even after 2 years. Histologically, CAP and IDCs conformed to the massive thrombotic complex without any fragmentation. By creating a frame or prop with retrievable microcoils, we were able to inject the CAP implies a comparison safely and precisely than has been previously reported. Our findings suggest that this method will be useful for the treatment of cerebral aneurysms.

Original publication




Journal article


Acta Med Okayama

Publication Date





153 - 164


Aneurysm, Angiography, Animals, Carotid Artery Diseases, Cellulose, Dogs, Embolization, Therapeutic, Neck, Platinum, Polymers